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Introduction

n Very low cost and high performance parallel computer

n PC cluster using optimized interconnection network

n A PCI network board (FastHSL) developed at LIP6:

l High speed communication network (HSL,1 Gbit/s)

l RCUBE: router (8x8 crossbar, 8 HSL ports)

l PCIDDC: PCI network controller (a specific communication

protocol)

n Goal: supply efficient software layers

⇒ A specific high-performance implementation of MPICH
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The MPC computer architecture
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Our MPC parallel computer

The MPC parallel computer
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The FastHSL PCI board

Hardware performances:

n latency: 2 µs

n Maximum throughput on the link: 1 Gbits/s

n Maximum useful throughput: 512 Mbits/s

The MPC parallel computer
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The remote write primitive (RDMA)
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PUT: the lowest level software API
n Unix based layer: FreeBSD or Linux

n Provides a basic kernel API using the PCI-DDC remote write

n Implemented as a module

n Handles interrupts

n Zero-copy strategy using physical memory addresses

n Parameters of 1 PUT call:

l remote node identifier,

l local physical address,

l remote physical address,

l data length, …

n Performances:

l 5 µs one-way latency

l 494 Mbits/s

The MPC parallel computer
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MPI-MPC1 architecture
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MPICH on MPC: 2 main problems
Virtual/physical address translation?

Where to write data in remote physical memory?
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MPICH requirements

Two kinds of messages:

n CTRL messages: control information or limited size user-data

n DATA messages: user-data only

Services to supply:

n Transmission of CTRL messages

n Transmission of DATA messages

n Network event signaling

n Flow control for CTRL messages

⇒ Optimal maximum size of CTRL messages?

⇒ Match the Send/Receive semantic of MPICH to the remote
write semantic

MPI-MPC1: the first implementation of MPICH on MPC
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MPI-MPC1 implementation (1)

CTRL messages:

n pre-allocated buffers, contiguous in physical memory,
mapped in virtual process memory

n an intermediate copy on both sender & receiver

n 4 types:

l SHORT: user-data encapsulated in a CTRL message

l REQ: request of DATA message transmission

l RSP: reply to a request

l CRDT: credits, used for flow control

DATA messages:

n zero-copy transfer mode

n rendezvous protocol using REQ & RSP messages

n physical memory description of remote user buffer in RSP

MPI-MPC1: the first implementation of MPICH on MPC
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MPI-MPC1 implementation (2)

MPI-MPC1: the first implementation of MPICH on MPC
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MPI-MPC1 performances

Each call to the PUT layer = 1 system call

Network event signaling uses hardware interrupts

Performances of MPI-MPC1:

n benchmark: MPI ping-pong

n platform: 2 MPC nodes with PII-350

n one-way latency: 26 µs

n throughput: 419 Mbits/s

⇒ Avoid system calls and interrupts
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Processus in
user space
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⇒ Post remote write orders in user mode

⇒ Replace interrupts by a polling strategy
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MPI-MPC2 implementation

Network interface registers are accessed in user mode

Exclusive access to shared network resources:

n shared objects are kept in the kernel and mapped in user

space at starting time

n atomic locks are provided to avoid possible competing

accesses

Efficient polling policy:

n polling on the last modified entries of the LME/LMR lists

n all the completed communications are acknowledged at once
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MPI-MPC1&MPI-MPC2 performances
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MPI-MPC2 latency speed-up
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The CADNA software

CADNA: Control of Accuracy and Debugging for Numerical
Applications

n developed in the LIP6 laboratory

n control and estimate the round-off error propagation

Computing R1 Computing R2 Computing R3

Sending R1 Sending R2 Sending R3

Receiving R2 & R3 Receiving R1 & R2Receiving R1 & R3

Computing 2 Computing 2 Computing 2

P1 P2 P3
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MPI-MPC performances with CADNA

Application: solving a linear system using Gauss method

n without pivoting: no communication

n with pivoting: a lot of short communications

System
size

Number of
exchanges

Communication time
(sec.)

One exchange time

(µs)
MPI-MPC1 MPI-MPC2 MPI-MPC1 MPI-MPC2

800 646682 51 31 79 48
1200 1450450 101 66 70 46
1600 2574140 191 128 74 50
2000 4018285 288 177 72 44

Mean value (µs) 74 47

 ⇒ MPI-MPC2 speed-up = 36%
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Conclusions & perspectives
n 2 implementations of MPICH on a remote write primitive

n MPI-MPC1:

l system calls during communication phases

l interrupts for network event signaling

n MPI-MPC2:

l user-level communications

l signaling by polling

l latency speed-up greater than 40% for short messages

n What about maximum throughput?

l Locking user buffers in memory and address translations are
very expansive

l MPI-MPC3 ⇒ avoid address translations by mapping the virtual
process memory in a contiguous space of physical memory at
application starting time


