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Abstract

Running parallel applications on clusters with high-
speed local networks requires fast communication between
computing nodes but also low latency and high bandwidth
file access. However, the application programming inter-
faces of high-speed local networks were designed forMPI
communication and do not always meet the requirements of
other applications like distributed file systems.

In this paper, we explore several solutions to improve the
use of high-speed network for in-kernel applications. Dis-
tributed file systems implemented on top of theGM inter-
face of MYRINET are first examined to demonstrate how
hard it is to get an efficient interaction between such ap-
plications and the network. Then, we propose solutions
to simplify and improve this interaction and integrate them
into the kernel interface of the newMYRINET driver, MX .
Performance comparisons betweenMX andGM, and their
usage in both a distributed file system and a zero-copy pro-
tocol show nice improvements. Moreover, we are able to
improve the performance of the flexible kernelAPI we de-
signed in MX that allows to remove some intermediate
copy.

1 Introduction

The emergence of parallel applications led to the suc-
cess of workstation clusters which are generic, extensible
and less expensive. As the application always require more
computational power, high-bandwidth and low-latency lo-
cal networks with intelligent interface cards have been de-
veloped, such as MYRINET [1], QUADRICS [12] or INFINI-
BAND [13]. Specific software optimizations have been pro-
posed to enable on one hand the overlapping of communi-
cations with computation phases, and on the other hand a
drastic reduction of communication overhead in the host.
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Overlapping communication between different nodes is
enabled by deporting a large part of the protocol stack in the
network interface card. This led to high-level software pro-
gramming interfaces that are based on asynchronous com-
munication primitives, such as MPI (Message Passing In-
terface[3]). The application posts send or receive requests
and gets notification of their completion later. This is very
different from traditional network interfaces, especially the
SOCKET interface to access ETHERNET networks through
the TCP/IP stack where all communication primitives are
blocking.

The reduction of the communication overhead in the
host is achieved by three mechanisms. Intermediate copies
have been removed (0-copy), the operating system has to
be avoided (OS-bypass) and data have to be transferred di-
rectly between applications and the network through DMA
(Direct Memory Access) initiated by the NIC (Network In-
terface Card).

Several works have targeted communication software
layers to improve the performance of parallel applications.
However, very few works have focussed the utilization of
high-speed local networks in other contexts, especially for
applications that are not implemented in user-space like
MPI computations. For instance, storage requirements in
clusters may benefit from an efficient usage of these net-
works. This includes either distributed file systems orNet-
work Block Devices. Applications using the SOCKET inter-
face may also be improved by using a zero-copy protocol
on top of the native in-kernel API of a high-speed local net-
work. All these kernel contexts have specific constraints
that are very different from user-space communication re-
quirements.

This paper presents our study and propositions for im-
proving the interaction between such in-kernel applications
and the highly-specific network programming interface on
MYRINET. Section 2 presents potential in-kernel applica-
tions that may be used on clusters and their issues when in-
teracting with the network. Then, we expose, in Section 3,
how we have modified the GM interface of MYRINET to
allow an efficient usage of the the underlying network in
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distributed file system clients. We detail in Section 4 sev-
eral ideas to improve the flexibility of network program-
ming interfaces and how we integrated them in the new
MYRINET/MX driver. Section 5 finally gives a first perfor-
mance evaluation in both distributed file systems and zero-
copy socket protocols.

2 In-Kernel Applications on High-Speed Lo-
cal Networks

2.1 Context

Parallel applications running on clusters often want to
get as much performance for storage access as for commu-
nication between computing nodes. Storage access layers
may include either distributed file systems or network block
devices, and were usually implemented in the operating sys-
tem. The standard interface that is exposed to user ap-
plication is basically based on non-vectorial non-collective
blocking operations, often implemented with intermediate
copies. This basic interface led cluster designers to propose
new specific file access interfaces, in the same way they im-
proved communication performance by proposing specific
APIs that are suitable to high-speed network low-level soft-
ware layers.

The MPI-IO interface [8] was designed to provide the
same model for file access primitives than for communi-
cation primitives in MPI. Another example is DAFS (Di-
rect Access File System[7]), which was designed to make
the most out of the underlying network for remote file ac-
cess. It thus provides a highly specific API, similar to VIA
(Virtual Interface Architecture[14]). Both file access inter-
faces provide a high-performance distant file access model.
But, they require user-application to be written according to
their very specific requirements, for instance asynchronous
requests and completion queues.

More recently, modern operating systems have inte-
grated these parallel application requirements. Vectorial
primitives were first introduced. Then, zero-copy file access
was added to the LINUX kernel and asynchronous input-
output in LINUX 2.6. This new support for advance features
in the operating system leads to the utilization of standard
interfaces instead of specific interfaces that required appli-
cation rewriting. LUSTRE [2] is one of the most famous
recent distributed file systems for clusters. It provides a
parallel and scalable system that respects the standard file
access interface.

On the other hand, high-speed network APIs remain
very specific. Event-based interfaces with asynchronous
primitives and completion notification generally does not
raise very difficult problems in non-MPI contexts. How-
ever, the virtual memory management, and especially mem-
ory registration, still seems designed for user-space MPI

applications. For instance, first LUSTRE releases used in-
termediate memory copies to integrate the GM interface [9]
of MYRINET networks. These copies are CPU consum-
ing while the user parallel application needs the CPU for
its computations (MYRINET support has apparently been
dropped now). Moreover, the kernel PVFS2 client (Par-
allel Virtual File System[6]) returns to user-space before
accessing the network. This design choice is justified in the
documentation through the problem of having ready access
to all networking APIs from within the kernel.

We now detail the constraints of high-speed network in-
terfaces, study their interaction with our main target appli-
cation, a distributed file system client, and give several hints
concerning other in-kernel applications.

2.2 Constraints of High-Speed Network APIs

2.2.1 Memory Registration

Applications manipulate virtual addresses while the hard-
ware only knows physical addresses. The memory man-
agement subsystem is usually in charge of this transla-
tion. It is no-more involved in OS-bypass communications.
QUADRICS QSNET networks require modification of the
operating system so that all addressing details are transpar-
ently forwarded to the network interface. Most other net-
work systems, especially MYRINET and INFINIBAND, pre-
fer not modifying the operating system. Thus, they require
address translation with the explicit help of the kernel.

The common strategy is based on asking the application
to prepare the I/O buffers it is going to use for communi-
cations. This operation is commonly calledMemory Regis-
tration. It uses a specific system call to pin pages in phys-
ical memory and register their address translations into the
network interface card. All the following communications
may then directly pass virtual addresses to the NIC which
will get their associated physical addresses from its trans-
lation table. Data transfers are thus processed by a DMA
engine on the NIC without any operating system help. This
translation table in the NIC has been first introduced in U-
NET/MM [17].

This strategy presents two drawbacks. Firstly, memory
registration cost is usually so high that it can only be effi-
cient if the application reuses registered buffers in several
communications. Secondly, traditional applications were
not designed to explicitly register their I/O buffers. It is
thus required to either modify them or to insert a transpar-
ent layer to register on the flight.

Standard parallel computing libraries such as MPI or
VIA have fortunately been implemented on top of these
specific network software interfaces. This leads to parallel
applications making the most out of the underlying high-
speed network. However, this specificity makes their usage
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difficult in a different context, especially for an in-kernel
application or a client-server protocol.

2.2.2 Example of Memory Registration with GM on
Myrinet networks

GM is the current official driver of MYRINET networks. It
follows the message-passing paradigm and was designed
for MPI applications. The user posts send, receive or re-
mote memory access requests and gets their completion no-
tifications in a unique event queue.

GM requires all I/O buffers used by the application to
be registered in the NIC first. As the amount of page trans-
lations that may be stored in the NIC is limited, useless
entries have to be deregistered. As usual, registration and
deregistration have a high cost. In GM, we measured a 3µs
overhead per page registration, with the addition of a 200µs
base for deregistration (see Figure 1). Actually, this model
is only interesting for large memory zones that are used sev-
eral times.
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Figure 1. Comparison between copy and
memory registration cost in GM.

A simple strategy consists in copying small buffers into
a statically pre-registered memory zone. A small amount of
CPU cycles is wasted but the large cost of memory regis-
tration is also avoided for these small buffers

The major improvement was proposed in [16]: a mem-
ory registration cache (Pin-down Cache). Deregistration is
delayed until it is really required (when no more pages can
be registered). If cached pages are re-used, registration is
not needed. The major drawback is that the cache must be
kept up-to-date with mapping changes. As the application
is not aware of the caching of its address translations in the
NIC, it might change its address space (especially through
free or munmap), thus making the registered translation

invalid. A common solution consists in updating the cache
by intercepting all address space modification calls from the
application.

This happens in a middle-ware (for instance MPI) be-
tween GM and applications that were not written to register
their I/O buffers. In this case, the middle-ware transpar-
ently registers buffers on the flight and intercepts address
space modifications. In a distributed file-system or zero-
copy socket protocol, we will see that such an on-the-flight
registration mechanism is also required.

2.3 Interaction between High-Speed Networks
and Distributed File Systems

We now detail the interaction issues between high-speed
network software interfaces and our main target in-kernel
application, a distributed file system client.

2.3.1 Buffered Access to remote files and Interaction
with the Page-Cache

Physical storage systems are so slow that modern operating
systems have to optimize their access. The LINUX Page-
Cachekeeps copies of disk blocks in the host memory to
avoids repetitive reading of same physical blocks. Writing
is processed asynchronously so that the application does not
wait. Data transfer involving the application are thus only
memory copies between its user-space and the page-cache.

In a distributed file system using suchbuffered accesses,
a protocol has to maintain consistency across cached pages
on different clients and physical blocks on the server. Using
a GM-like interface in such a context really differs from
parallel application context. Firstly, high-speed network
software layers were not designed for communication from
a kernel context. Secondly, memory zones that are involved
here have very different characteristics than the traditional
user buffers. Pages of the page-cache are already locked
in physical memory and generally not mapped in virtual
memory. But, their physical address is easy to obtain since
for instance, a distributed file system client runs in a kernel
context (in contrary to a user application running in a user
context). The assumptions for the design of the memory
registration model are thus no more suitable here.

It is important to note that this is also valid forNetwork
Block Deviceclients. The NBD client is at the bottom of the
storage stack in the operating system. It allows to mount
remote disks as local partitions. Such an application ma-
nipulates the page-cache as a distributed file system client
does. Thus, the same conclusion about memory registration
applies here.
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2.3.2 Direct Access to remote files

The kernel page-cache has the drawback of preventing ap-
plications from controlling physical disk accesses. Memory
consuming applications, for instance databases or out-of-
core computation, keep their own memory cache in user-
space. They do not want their write requests to be buffered
by the operating system since the page-cache might swap
out some important pages of the application to store the lo-
cal copy of written data. Modern UNIX systems thus pro-
vide zero-copy disk access to bypass the page-cache (by
giving the O_DIRECTflag when opening the file). Data
transfers are thendirect from application I/O buffers to the
storage subsystem, that is local disks or a distant file-system
on the server.

This strategy is very similar to zero-copy data transfer
between I/O buffers of different instances of a parallel ap-
plication running on a cluster. But, the implementation is
very different since several operating systems, especially
L INUX , do not provide any support for the high-speed net-
work communication model while zero-copy file access is
supported.

Actually, direct file access is not the only in-kernel ap-
plication that require zero-copy data transfer between user-
space and the networks. It is now common to implement a
zero-copy socket layer on top of the native network inter-
face. A specific zero-copy implementation is added to the
support of the SOCKET interface in the kernel. This makes
traditional application using sockets benefit from the under-
lying high-speed network without any modification. Zero-
copy socket protocols have same requirements than direct
file access with theO_DIRECTflag.

3 Experimentations with GM on Myrinet

Our goal is to improve the interaction between in-kernel
applications and high-speed network APIs. We now detail
of such an application, a distributed file system client, may
be efficiently implemented on MYRINET networks.

3.1 ORFA, a Remote File-Access Protocol for
High-Speed Networks

We developed an experimentation protocol named
ORFA (Optimized Remote File-system Access) to opti-
mize point-to-point communications between a client and
a server in a distributed file system. Our work must then
be applicable in real systems such as PVFS or LUSTRE to
improve their usage of the underlying high-speed network.
We focus on standard file access interfaces, especially re-
cent LINUX interfaces, and try to tightly integrate the usage
of MYRINET networks to make the most out of their perfor-
mance.

ORFA has initially been developed in user-space to
study the impact of high-speed networks on remote file ac-
cess, without suffering of in-kernel implementation con-
straints. The ORFA client was a user-level library trans-
parently intercepting all remote file access and supporting
special primitives such asfork or exec [5].

We showed in [4] that MYRINET networks may trans-
fer large amount of data with very high performance in this
context. However, meta-data access (file attributes) does
not benefit from the low latency of the network. We then
decided to work on ORFS (Optimized Remote File System),
the ORFA client in the LINUX kernel. This implementation
benefits from VFS caches (Virtual File Systems) improving
meta-data access, and secondly gives a much larger vali-
dation of our work since most distributed file systems in
clusters are now implemented in the kernel.

We now detail both direct and buffered file access im-
plementations in ORFS on GM. We used GM 2.0.13 on
a Linux kernel 2.4.26. Our experimentation platform is
composed on 2.6 GHz dual-XEON nodes with 2 GB RAM
and PCI-XD MYRINET cards. This network can sustain
250 MB/s full-duplex.

3.2 Direct Access to remote files on GM

Direct remote file access implementation in ORFS (see
Section 2.3.2) requires communications from application
user-space memory to a MYRINET communication port,
that was open in the kernel. Memory registration seems
to be the simplest solution to this case. But, a registration
cache (as in the ORFA client) is needed. This imposes to
know address space modifications. It is possible in user-
space by intercepting application requests in a shared li-
brary. But, the LINUX kernel does not provide any mecha-
nism for such tracing in a kernel context.

Thus, we developed a generic infrastructure called
VMA SPY allowing any external module to ask for notifi-
cation of address space modifications. VMA SPY adds sev-
eral hooks in the LINUX kernel where registered functions
are called. An external module may then attach a function
it to be called when an virtual memory area is unmapped or
duplicated.

Then, we implemented a generic registration cache in the
kernel named GMKRC (GM Kernel Registration Cache)
which is kept up-to-date by VMA SPY (see Figure 2).
Moreover, GMKRC is responsible for solving collisions
between address spaces of the multiple processes access-
ing our file system. Indeed, GM assumes aport can only
be used by a single process. Our shared port model pre-
vents the network interface card from knowing which ad-
dress space a given virtual address belongs to. We solves
this problem by recompiling the card firmware with 64 bits
pointers on 32 bits host. GMKRC then stores a descriptor
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Figure 2. Direct access in ORFS with GMKRC
(registration cache) and VMA Spy (notifica-
tion of address space modifications).

of the address space in the most significant bits. This makes
any descriptor unique and thus avoids any address space
collision. This strategy is transparently implemented inside
GMKRC so that in-kernel users still pass normal 32 bits
pointers to the GMKRC API.
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Figure 3. Performance of direct access in
ORFS with and without registration cache.
Comparison with raw GM and ORFA (user-
space implementation).

We present on Figure 3 the bandwidth observed at the
application level through traditionalread calls on top of
direct remote file accesses with the ORFS protocol and
GMKRC and VMA SPY. These results, and all the follow-
ing ones, were obtained by averaging 100 runs. Comparing
ORFS with and without registration cache highlights the
impact of the application memory utilization scheme. With-
out any cache hit, the performance is 20 % lower. ORFS
performance is still lower than ORFA because of the over-

head of system calls and of the traversal of the VFS layers.
ORFS direct file access with GMKRC and VMA SPY

shows to very good performance on top of GM in the kernel
since 90 % of the network bandwidth is achieved.

3.3 GM and the Page-Cache

Buffered file access requires to transfer data between
the page-cache in the kernel and the distant server. From
the ideas we developed in Section 2.3.1, we added to the
GM kernel interface some communication primitives based
on physical addresses and the required infrastructure in the
MCP (Myrinet Control Program, the program running in
the network interface card). Remote file access through
the page-cache in ORFS give the physical addresses of all
pages that are involved in the requested communication to
the NIC. This strategy improves the latency since the NIC
does not require to translate the given virtual address by
looking in its translation table. We measured a 0.5µs gain
on both the sender and the receiver’s side on our MYRINET

cards, that is 10 % improvement.
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Figure 4. Performance comparison between
direct access (zero-copy) and buffered ac-
cess (through the Page-Cache using the
physical address) in ORFS on GM.

Remote file access performance with ORFS using our
GM physical address based interface is presented on Fig-
ure 4. We measure the throughput at the application level
when accessing large files sequentially. Remote accesses
without involving the page-cache are represented by thedi-
rect case, whilebuffered case is through the page-cache.

The page-cache is progressively filled by the kernel ac-
cording to application requests. Data transfers are pro-
cessed per page (4 kB on our architecture). This leads to
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an under-utilization of the network bandwidth. However,
4 kB accesses are faster through the page-cache compared
to direct accesses, even if an additional copy from the page-
cache to the application is required. This shows the effi-
ciency of our physical based interface.

On the other hand, an application requesting large data
transfers will show much better performance in the di-
rect case. The reason is that a direct access requires only
one network request while a large buffered access is split
in page-sized requests. This issue should disappear with
L INUX 2.6 kernels which are able to combine multiple
page-sized accesses in a single request. However, this
would require vectorial communication primitives, that is
something GM does not provide (see Section 4.1).

We took care of optimizing both direct and buffered re-
mote file accesses. But, it is important to keep in mind that
choosing between these two types is the application respon-
sibility.

4 Propositions to improve in-Kernel APIs of
Cluster Networks

We have presented the difficulties one may face when
trying to efficiently use the high-speed network in a dis-
tributed file system. We had to patch both GM and the
L INUX kernel to simplify their interaction in our experi-
mental platform, ORFS. These difficulties are actually not
specific to MYRINET GM. Any software interface based on
memory registration will face similar issues. That is why
we propose new mechanisms to facilitate the usage of high-
speed local network APIs in a non-MPI contexts.

4.1 Physical Address and Vectorial Communica-
tions

As memory registration is not the right solution for com-
munication involving the page-cache of the kernel, and as
our physical address based primitives are adapted to any
communication initiated from a kernel context, it is easy to
obtain the physical address of any page of the page-cache,
but also any page that is mapped in kernel-space or even
in user-space.Kernel memory is used for messages that
are exchanged between the in-kernel application and dis-
tant nodes, for instance requests that are sent to a file server.
Such memory zones are often already pinned.User mem-
ory is used for zero-copy data transfer between the appli-
cation and the network (see Section 2.3.2). User memory
zones have to be pinned.

In both cases, the cost of memory registration is avoided
and the latency is improved (especially for small messages).
Providing a physical address based interface to high-speed
network software APIs thus seems recommended.

However, a virtually contiguous memory zone is gen-
erally not physically contiguous. It is especially true for
user-space memory. Any multiple-page transfer (more than
4 kB on IA32 architectures) between user-space and the
network using physical addresses would then be divided
into multiple non-contiguous segments. Moreover, using
multiple pages of the page-cache would also leads to seg-
mented communications (see Section 2.3.1).

It is obviously possible to use one communication prim-
itive for each physically contiguous zone. But, this might
be a constraint since some interfaces (especially GM) ask
the user to limit the amount of pending requests. The easier
solution here is to use vectorial communication primitives
to transfer several non-contiguous segments at once. These
primitives are not offered by several interfaces such as GM.
In the same way they are useful in user-space (for instance
to implement an efficient MPI layer), they might be a very
interesting feature in a kernel API. In the next Section, we
detail the integration of these ideas in the MX kernel inter-
face.

4.2 Implementation in Myrinet Express

MX (Myrinet Express[10]) is the next official software
interface of MYRINET networks. Its main characteristics
is to almost provide a MPI interface at the network level
(since MPI is the most common application). Vectorial
communications are thus supported. Another interesting
point is the fact that physical addresses are now directly us-
able by the network interface card, thus no explicit memory
registration is required.

We worked in collaboration with MYRICOM to, firstly
move and expose the MX programming interface in the
kernel, and secondly integrate our ideas to make the inter-
action between in-kernel applications and MYRINET net-
works easier. Our work has now been integrated in the of-
ficial MX distribution. Its in-kernel API proposes a native
and optimized support for different types of memory ad-
dressing. The application has to pass this type of address to
MX:

User virtual: MX pins the target zones and translates their
addresses into physical addresses.

Kernel virtual: These zones are often already pinned. MX
just has to translate addresses.

Physical: The application is responsible for pinning mem-
ory if needed.

The distinction between the first two types gives a more
generic support of the difference between user and kernel
spaces. These spaces are generally independent and non-
contiguous. This signify that they contain same virtual ad-
dresses pointing to different physical locations. It is then
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impossible for the network layer to know whether a given
virtual address should translated into its user or kernel cor-
responding physical address. Even if standard LINUX ker-
nels do not have this issue (user and kernel spaces are con-
tiguous), it is easy for any application to tell what kind of
address it is using. This is the reason why we added this
distinction in the MX API.

Looking at other kernel-level APIs such asKDAPL for
INFINIBAND or KCOMM for QUADRICS, it appears that
similar memory addressing solutions have been proposed,
even if these APIs where not designed for same require-
ments. This shows how our interface may be suitable to
various applications on MYRINET networks.

5 Performance evaluation

5.1 Performance of MX in-kernel interface
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Figure 5. Comparison of bandwidth in MX and
GM.

During the development of the MX kernel interface, we
designed a very generic core infrastructure so that kernel
communications would not suffer of a user-oriented design.
Consequently, the MX performance (see Figure 5) does not
differ between user and kernel communications. The large
message bandwidth is even higher with the kernel interface
since the page locking overhead is lower.

GM does not provide such an efficient kernel interface.
Its small message latency is 2 us higher in the kernel com-
pared than user-space. Moreover, GM user latency is more
than 50 % higher than with MX (6.7 us against 4.2 us for
1-byte message). GM large message bandwidth is the same
than MX. But, GM benefits here from a 100 % reuse of the
application buffers while MX does not.
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Figure 6. Measured impact of the removal
of the copy of medium messages (from
128 bytes to 32 kB) on the sender side and
predicted impact of the removal of both side
copies in MX.

Our specific kernel interface enables optimizations ac-
cording to the type of addressing that the application passes.
Indeed, this addressing characteristic may be used to avoid
locking or even segmentation of physically contiguous
zones. The standard MX implementation uses a copy on
both sides when processing medium side messages (from
128 bytes to 32 kB). Larger messages are pinned internally
while small messages useProgrammed I/O. These internal
intermediate copies correspond to what common applica-
tion do when trying to avoid explicit memory registration
(see Section 2.2.2). MX does not ask applications to regis-
ter memory but uses copy or registration internally.

This copy might actually be avoided for physical address
based communications. As a proof of concept, we removed
the copy on the send side and show the resulting bandwidth
on Figure 6. It leads to 17 % bandwidth improvement for
32 kbytes messages. This optimization is possible since the
network card interface does only manipulate physical ad-
dresses in MX. It is then easy to pass the application given
addresses, even if a translation is needed (since we are in
the kernel).

We also predicted the impact of removing the copy on
the receive side (see the dashed graph on Figure 6). It gives
another 15 % bandwidth improvement for medium mes-
sages. It is currently impossible to implement this optimiza-
tion since the NIC does not know the address of the receive
buffer. The receives are processed by the host. Thus, we
can not avoid the receive copy by directly passing our phys-
ical address to the NIC. This issue might be solved when
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future MX development will move receive processing into
the NIC.

Such an improvement might lead to increase the medium
message maximal size in this context since large message
bandwidth looks lower. Fortunately, large message process-
ing in MX is still under strong development. The current
performance difference might disappear soon.

Anyway, our kernel interface allowed the removal of
one intermediate copy for physically contiguous messages.
Non-contiguous messages will require the upcoming vecto-
rial communication support in MX. For now, our optimiza-
tion gives an interesting improvement when sending up to
8 physically contiguous pages on IA32 architecture. This
is not a usual case in a distributed file-system environment.
The most common case would be a single-page transfer. In
this case, our optimization gives a 9 % improvement.

5.2 Application to Distributed File systems

We now study the performance of our MX kernel inter-
face in real applications. The copy-removal optimization
that we just presented was not used during the following
tests. We first compare remote file access performance with
ORFS on GM and MX.
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Figure 7. Performance comparison of direct
file access in ORFS on MX and GM.

Direct file accesses on MX are slightly better than over
GM. The difference is similar to their raw bandwidth differ-
ence. However, we have to keep in mind that GM benefits
here from 100 % hits in the registration cache while MX
does not use such a strategy. We showed in Section 3.2 that
ORFS performance on GM can be reduce from 20 % with
much less cache hits.

Buffered file access in ORFS on MX shows a 40 % im-
provement over GM. Network requests are page-sized in
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Figure 8. Performance comparison of
buffered file access in ORFS on MX and GM.

this context. But, MX raw performance is not better than
GM for such messages. The ORFS/MX performance im-
provement is thus caused by our improved kernel interface
(which makes the ORFS implementation much more effi-
cient). It also has to be emphasized that GM was designed
for user-level applications and thus lacks an efficient in-
kernel communication implementation.

In both file access types, the MX kernel interface was
much easier to work with than the GM one. Firstly, no ker-
nel patch is required since memory registration is only used
internally. Our kernel API provides all primitives that our
implementation requires, especially when dealing with user
space for 0-copy data access or with physical addresses in
the page-cache for buffered accesses. Secondly, the MX
API makes event notification more flexible, for instance by
allowing the application to wait on a single or any pend-
ing request. For instance, this makes the implementation
of both synchronous and future asynchronous file requests
easier.

5.3 Application to Zero-Copy Socket Protocol

MYRICOM offers another software which is using MX
in the kernel, SOCKETS-MX. It allows existing applications
in binary format to benefit from the high-speed MYRINET

network when using TCP/IP socket function calls. It adds
a new SOCKET protocol to the LINUX kernel where data
is directly passed onto the MYRINET network bypassing
TCP/IP. With the fully asynchronous send functions in
MX the overhead is significantly lower than when the full
TCP/IP stack needs to be traversed (with fragmentation and
checksum computation). As a matter of fact, TCP/IP is
known to use 50 % of the overall transaction cost [15].
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We compared SOCKETS-MX performance with the
same implementation using GM. SOCKETS-GM offers the
same capabilities but lacked two major skills. Firstly, lim-
ited completion notification mechanisms in GM require the
use of an extra (dispatching) kernel thread which increases
the latency. Secondly, memory registration problems are
similar to ORFS direct file access troubles on top of GM,
as expected in Section 2.3.2.
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Figure 9. Sockets-MX and Sockets-GM small
message latency comparison.

We used NETPIPE [11] ping-pong to compare
SOCKETS-MX and SOCKETS-GM performance on PCI-
XE MYRINET cards (these cards can sustain 500 MB/s full-
duplex by using two links). We measured a 5µs one-way
latency at the application level for 1-byte messages with
SOCKETS-MX (see Figure 9). This is only a 1µs overhead
over raw MX latency. It is very good since a system call
is involved (about 400 ns). SOCKETS-GM gets 15µs one-
way latency. A common GIGA-ETHERNET network might
get much more.

SOCKETS-MX bandwidth is always higher than
SOCKETS-GM (see Figure 10). Medium message band-
width improvement is up to 100 % (for 4 kB) while large
message is up to 50 % (for 1 MB). This shows how the MX
kernel interface and SOCKETS-MX behaves well. The dif-
ferent anomalies on the graphs are caused by the fact that
SOCKETS-MX and SOCKETS-GM implementation in the
L INUX kernel are still under development.

6 Conclusion and Perspectives

In this paper, we have presented the issues that may be
raised when using high-speed network software program-
ming interfaces in a non-traditional context. These soft-
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Figure 10. Sockets-MX and Sockets-GM band-
width comparison.

ware interfaces were designed for MPI applications in user-
space. Their specificity makes their usage difficult in our
very different target contexts. We focussed on in-kernel ap-
plications and especially detailed the interaction between
MYRINET networks and a distributed file system client.

We first exposed modifications of the GM interface
of MYRINET networks. Firstly, using physical address
based communications seems very useful when dealing
with the page-cache. Secondly, the implementation of
GMKRC (GM registration cache in the LINUX kernel) and
VMA SPY (generic infrastructure to notify of addressing
modification) leads to efficient direct remote file access.
Performance evaluation on our experimental distributed file
system ORFS show how it is important to make the net-
work programming interface and storage access layers in-
teract well.

We proposed several ideas to improve software inter-
faces for cluster networks. Physical address based prim-
itives and vectorial communications seem very important
to improve the way in-kernel applications benefit from the
high-speed local network. Moreover, application help (by
saying the address type) looks useful to efficiently handle
different types of memory addressing. We integrated our
ideas in the upcoming MYRINET driver, MX.

The MX kernel interface behaves at least as the tradi-
tional user-level interface, with a more flexible support for
different types of memory that an in-kernel application may
manipulate. We presented performance evaluation of two
in-kernel applications, a distributed file system client and
a zero-copy socket protocol. Both benefit from MX small
message latency and high bandwidth without requiring any
memory registration cache mechanism. Performance eval-
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uations of distributed file systems with the MX kernel in-
terface show a nice improvement for buffered file accesses.
Direct file accesses are slightly better than over GM with
100 % cache hits in its registration cache. SOCKETS-MX
shows that both latency and bandwidth get a large improve-
ment compared to the GM implementation.

The kernel API appears to be much more easy to use and
flexible in our context. Moreover, several kernel specific op-
timizations in the MX implementation are possible due to
the advanced knowledge of memory type given by the appli-
cation. As a proof of concept, we introduced a 15 % band-
width improvement by removing a copy on the sender’s side
when dealing with physically contiguous medium message
in MX.

We expect that our third target in-kernel application, a
Network Block Deviceclient, will also largely benefit from
our improved kernel software interface. This client trans-
mits low-level block device accesses to a remote server, al-
lowing remote partition mounting such as withISCSI. Such
a client manipulates the page-cache in a similar way a dis-
tributed file system client does. Our physical address based
interface should thus be suitable in this context.

We also plan to compare our work with other kernel-level
APIs such as QUADRICS KCOMM andKDAPL on INFINI-
BAND since they propose similar solutions.

7 Software Availability

ORFA and ORFS implementations are distributed under
GPL licenses. They may be downloaded fromhttp://
perso.ens-lyon.fr/brice.goglin/work .

The MX kernel interface is available in the main MX
distribution through MYRICOM.
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